TERRAMETRA

INEQUALITIES

Terrametra Resources

Lynn Patten

1.7 INEQUALITIES

- Linear Inequalities
- Three-Part Inequalities
- Quadratic Inequalities
- Rational Inequalities

PROPERTIES of INEQUALITY

PROPERTIES of INEQUALITY

Let $\boldsymbol{a}, \boldsymbol{b}$ and \boldsymbol{c} represent real numbers.

1. If $a<b$, then $a+c<b+c$.
2. If $a<b$ and if $c>0$, then $\boldsymbol{a c}<\boldsymbol{b c}$.
3. If $a<b$ and if $c<0$, then $a c>b c$.

Replacing $<$ with $>, \leq$, or \geq results in similar properties.

PROPERTIES of INEQUALITY

Note

> Multiplication may be replaced by division in Properties 2 and 3 .

Always remember to reverse the direction of the inequality symbol when multiplying or dividing by a negative number.

TERRAMETRA

Linear Inequalities

Terrametra Resources
Lynn Patten

LINEAR INEQUALITY in ONE VARIABLE

LINEAR INEQUALITY in ONE VARIABLE

A linear inequality in one variable

 is an inequality that can be written in the form$$
a x+b<0
$$

Where \boldsymbol{a} and \boldsymbol{b} are real numbers, with $\boldsymbol{a} \neq \mathbf{0}$. (Any of the symbols $>, \leq$, and \geq may also be used.)

Example 1

Solving a Linear Inequality

1(a) Solve: $-3 x+5>-7$
Solution:

$$
-3 x+5-5>-7-5 \quad \text { Subtract } 5
$$

$-3 x>-12 \quad$ Combine like terms.
$-3 x \quad-12 \quad$ Divide by -3 .
Reverse the direction of the inequality symbol when multiplying or dividing by a negative number.

TYPES of INTERVALS INTERVAL NOTATION

TYPE OF INTERVAL	SET	INTERVAL NOTATION	GRAPH
All Real Numbers	$\{x \mid x$ is a real number $\}$	$(-\infty, \infty)$	
Open Intervals	$\{x \mid x>a\}$ $\{x \mid a<x<b\}$ $\{x \mid x<b\}$	(a, ∞)	
(a, b)			
$(-\infty, b)$	(\square)		
Closed Interval	$\{x \mid a \leq x \leq b\}$		

TYPES of INTERVALS INTERVAL NOTATION

TYPE OF INTERVAL	SET	INTERVAL NOTATION	GRAPH
Other Intervals	$\{x \mid x \geq a\}$	$\left[a_{\text {a }}\right.$)	
	$\{x \mid a \leq x<b\}$	$[a, b)$	
	$\{x \mid a<x \leq b\}$	(a, b]	!
	$\{x \mid x \leq b\}$	$(-\infty, b]$	
Disjoint Intervals	$\{x \mid x<a$ or $x>b$ \}	$(-\infty, a) \cup(b, \infty)$	\longleftarrow
	$\{x \mid x<a$ or $x \geq b\}$	$(-\infty, a) \cup[b, \infty)$	«)
	$\{x \mid x \leq a$ or $x>b\}$	$(-\infty, a] \cup(b, \infty)$	\longleftarrow
	$\{x \mid x \leq a$ or $x \geq b\}$	$(-\infty, a] \cup[b, \infty)$	

Example 2

Solving a Linear Inequality

2(a) Solve: $4-3 x \leq 7+2 x$ Give the solution set in interval notation.

Solution:

$$
\begin{aligned}
4-3 x & \leq 7+2 x & & \\
4-3 x-4 & \leq 7+2 x-4 & & \text { Subtract } 4 \\
-3 x & \leq 3+2 x & & \text { Combine like terms. } \\
3 x-2 x & \leq 3+2 x-2 x & & \text { Subtract } 2 x \\
-5 x & \leq 3 & & \text { Combine like terms. }
\end{aligned}
$$

Solving a Linear Inequality

2(a) Solve: $\quad 4-3 x \leq 7+2 x$
Give the solution set in interval notation.
Solution (cont'd):

$$
\begin{aligned}
-5 x & \leq 3 \\
\frac{-5 x}{-5} & \geq \frac{3}{-5} \\
x & \geq-\frac{3}{5}
\end{aligned}
$$

Divide by -5 .
Reverse the direction of the inequality symbol.

In interval notation the solution set is $\left[-\frac{3}{5}, \infty\right)$

Example 3

Solving a Three-Part Inequality

3(a) Solve: $-2<5+3 x<20$
Solution:

$$
\begin{array}{rlrl}
-2-5 & <5+3 x-5<20-5 & \begin{array}{l}
\text { Subtract } 5 \\
\text { (from each part) }
\end{array} \\
-7<3 x<15 & & \text { Combine like terms. } \\
\frac{-7}{3}<\frac{3 x}{3}<\frac{15}{3} & & \text { Divide each part by } 3 \\
& -\frac{7}{3}<x<5 & & \text { Simplify. }
\end{array}
$$

The solution set is $\left(-\frac{7}{3}, 5\right)$

TERRAMETRA

Quadratic Inequalities

Terrametra Resources
Lynn Patten

QUADRATIC INEQUALITIES

QUADRATIC INEQUALITIES

A quadratic inequality

is an inequality that can be written in the form

$$
a x^{2}+b x+c<0
$$

for real numbers $\boldsymbol{a}, \boldsymbol{b}$, and \boldsymbol{c}, with $\boldsymbol{a} \neq \mathbf{0}$.
(The symbol $<$ can be replaced with $>$, \leq, or \geq.)

Solving a Quadratic Inequality

Solving a Quadratic Inequality

Step 1 Solve the corresponding quadratic equation.
Step 2 Identify the intervals determined by the solutions of the equation.
Step 3 Use a test value from each interval to determine which intervals form the solution set.

Example 4

Solving a Quadratic Inequality

4(a) Solve: $\quad x^{2}-x-12<0$
Solution:
Step 1 Find the values of x that satisfy the corresponding quadratic equation.

$$
\begin{aligned}
x^{2}-x-12=0 & \begin{array}{l}
\text { Corresponding } \\
\text { quadratic equation. }
\end{array} \\
(x+3)(x-4)=0 & \text { Factor. } \\
x+3=0 \text { or } x-4=0 & \text { Zero-factor property. } \\
x=-3 \text { or } x=4 & \text { Solve each equation. }
\end{aligned}
$$

Solving a Quadratic Inequality

Step 2 The two numbers -3 and 4 divide the number line into three intervals.

The expression $x^{2}-x-12$ will take on a value that is either less than zero or greater than zero on each of these intervals.

Solving a Quadratic Inequality

Step 3 Choose a test value from each interval.

INTERVAL	TEST VALUE	Is $x^{2}-x-12<0$ True or False ?
A: $(-\infty,-3)$	-4	$(-4)^{2}-(-4)-12<0$
$8<0$?	

Since the values in Interval B make the inequality true ...
The solution set is $(-3,4)$

Example 5
 Solving a Quadratic Inequality

5(a) Solve: $2 x^{2}+5 x-12 \geq 0$
Solution:
Step 1 Find the values of x that satisfy the corresponding quadratic equation.

$$
\begin{aligned}
2 x^{2}+5 x-12=0 & \text { Corresponding } \\
(2 x-3)(x+4)=0 & \text { quadratic equation. } \\
2 x-3=0 \text { or } x+4=0 & \text { Zero-factor property. } \\
x=\frac{3}{2} \text { or } x=-4 & \text { Solve each equation. }
\end{aligned}
$$

Solving a Quadratic Inequality

Step 2 The two numbers -4 and 3/2 divide the number line into three intervals.

The expression $2 x^{2}+\mathbf{5 x}-\mathbf{1 2}$ will take on a value that is either less than zero or greater than zero on each of these intervals.

Solving a Quadratic Inequality

Step 3 Choose a test value from each interval.

INTERVAL	TEST VALUE	Is $2 x^{2}+5 x-12 \geq 0$ True or False?
A: $(-\infty,-4)$	-5	$\begin{aligned} 2(-5)^{2}+5(-5)-12 & \geq 0 \\ 13 & \geq 0 \end{aligned} \quad \text { True }$
B: $(-4,3 / 2)$	0	$\begin{aligned} 2(0)^{2}+5(0)-12 & \geq 0 \quad ? \\ -12 & \geq 0 \quad \text { False } \end{aligned}$
C: $(3 / 2, \infty)$	2	$\begin{array}{rcc} 2(2)^{2}-(2)-12 \geq 0 & ? \\ 8 \geq 0 & \text { True } \end{array}$

Since the values in Intervals A and C make the inequality true ...
The solution set is the union of intervals $(-\infty,-4) \cup\left[\frac{3}{2}, \infty\right)$

STRICT and NONSTRICT INEQUALITIES

Note

Inequalities that use the symbols < and > are strict inequalities; \leq and \geq are used in nonstrict inequalities.

In Example 4 the solutions of the equation were not included in the solution set since the inequality was a strict inequality.

In Example 5, the solutions of the equation were included in the solution set because of the nonstrict inequality

TERRAMETRA

Rational Inequalities

Terrametra Resources

Lynn Patten

RATIONAL INEQUALITIES

RATIONAL INEQUALITIES

A rational inequality

is an inequality that has a rational expression for one or more terms.
To solve a rational equation, multiply each side by the least common denominator (LCD) of the terms of the equation and then solve the resulting equation.

Because a rational expression is not defined when its denominator is 0 , proposed solutions for which any denominator equals 0 are excluded from the solution set.

Solving a Rational Inequality

Solving a Rational Inequality

Step 1 Rewrite the inequality, if necessary, so that 0 is on one side and there is a single fraction on the other side.
Step 2 Determine the values that will cause either the numerator or the denominator of the rational expression to equal 0 . These values determine the intervals of the number line to consider.
Step 3 Use a test value from each interval to determine which intervals form the solution set.

RATIONAL INEQUALITIES

Note

A value causing the denominator to equal zero will never be included in the solution set.

If the inequality is strict, any value causing the numerator to equal zero will be excluded.

If the inequality is nonstrict, any value causing the numerator to equal zero will be included.

RATIONAL INEQUALITIES

Caution

Solving a rational inequality such as ...

$$
\frac{5}{x+4} \geq 1
$$

by multiplying each side by $x+4$ to obtain $5 \geq x+4$ requires considering two cases, since the sign of $x+4$ depends on the value of x. If $x+4$ is negative, then the inequality symbol must be reversed.

The procedure used in the next two examples eliminates the need for considering separate cases.

6(a) Solve: $\frac{5}{x+4} \geq 1$
Solution:
Step 1

$$
\begin{array}{rlrl}
\frac{5}{x+4}-1 & \geq 0 & \begin{array}{l}
\text { Subtract } 1 \text { so that } \\
0 \text { is on one side. }
\end{array} \\
\frac{5}{x+4}-\frac{x+4}{x+4} & \geq 0 & \begin{array}{l}
\text { Use } x+4 \text { as the } \\
\text { common denominator. }
\end{array} \\
\frac{5-(x+4)}{x+4} & \geq 0 & & \text { Write as a single fraction. } \\
\frac{1-x}{x+4} & \geq 0 & \begin{array}{l}
\text { Combine terms in the numerator, } \\
\text { being careful with signs. }
\end{array}
\end{array}
$$

Note the careful use of parentheses.

Solving a Rational Inequality

Step 2 The quotient possibly changes sign only where x-values make the numerator or denominator 0 . This occurs at ...

$$
\begin{gathered}
1-x=0 \text { or } x+4=0 \\
x=1 \text { or } x=-4
\end{gathered}
$$

Solving a Rational Inequality

Step 3 Choose a test value from each interval.

INTERVAL	TEST	Is $\frac{5}{x+4} \geq 1$ True or False ?
A: $(-\infty,-4)$	-5	$\frac{5}{-5+4} \geq 1 ?-5 \geq 1$ False
B: $(-4,1)$	0	$\frac{5}{0+4} \geq 1 ? \frac{5}{4} \geq 1$ True
C: $(1, \infty)$	2	$\frac{5}{2+4} \geq 1 ? \frac{5}{6} \geq 1$ False

The values in the interval $(4,1)$ satisfy the original inequality.
The value 1 makes the nonstrict inequality true, so it must be included.
The value -4 makes the denominator 0 , so it must be excluded.
The solution set is $(-4,1]$

RATIONAL INEQUALITIES

Caution

Be careful with the endpoints of the intervals when solving rational inequalities.

Example 7

Solving a Rational Inequality

7(a) Solve: $\frac{2 x-1}{3 x+4}<5$
Solution:

$$
\begin{aligned}
\frac{2 x-1}{3 x+4}-5<0 & \text { Subtract 5. } \\
\frac{2 x-1}{3 x+4}-\frac{5(3 x+4)}{3 x+4}<0 & \text { Common denominator is } 3 x+4 \\
\frac{2 x-1-5(3 x+4)}{3 x+4}<0 & \text { Write as a single fraction. }
\end{aligned}
$$

Solving a Rational Inequality

Solution (cont'd):

Set the numerator and denominator equal to 0 and solve the resulting equations to find the values of x where sign changes may occur.

$$
\begin{gathered}
-13 x-21=0 \text { or } 3 x+4=0 \\
x=-\frac{21}{13} \text { or } x=-\frac{4}{3}
\end{gathered}
$$

Solving a Rational Inequality

Now choose test values from the intervals and verify that ...

- 2 from Interval A makes the inequality true;
- 1.5 from Interval B makes the inequality false;

0 from Interval C makes the inequality true.
Because of the < symbol, neither endpoint satisfies the inequality ...
The solution set is $\left(-\infty,-\frac{21}{13}\right) \cup\left(-\frac{4}{3}, \infty\right)$

